М.: Московский центр непрерывного математического образования (МЦНМО), 2013. –– 379 с.
Эта книга адресуется математикам, которые занимаются уравнениями в частных производных и функциональным анализом.
Первые две главы содержат вводные курсы. В главе I это теория пространств H
s бесселевых потенциалов. В главе II –– теория общих эллиптических уравнений и задач в этих пространствах с гладкими коэффициентами на гладких поверхностях и в областях с гладкой границей. Значительную часть книги составляет теория классических граничных задач для сильно эллиптических систем 2-го порядка с коэффициентами малой гладкости в ограниченных липшицевых областях. Вместе с вспомогательным материалом она изложена в главе III и продолжается в главе IV. В главе IV, имеющей характер обзора, результаты обобщаются на пространства H
sp бесселевых потенциалов и B
sp О.В. Бесова. Она начинается с очерка теории интерполяции. Изложение рассчитано в первую очередь на начинающих математиков, которые специализируются по уравнениям в частных производных и функциональному анализу. Особое внимание уделено доступности изложения.
Книга может быть интересна также специалистам в этих областях, так как содержит ряд результатов, полученных относительно недавно. Но она может быть полезна математикам и других направлений, включая специалистов по прикладной математике и геометров, а также физикам. Предполагается знакомство с основными математическими курсами, включая элементы функционального анализа.