Зарегистрироваться
Восстановить пароль
FAQ по входу

Jost J. Bosonic Strings: A Mathematical Treatment

  • Файл формата djvu
  • размером 916,62 КБ
  • Добавлен пользователем
  • Описание отредактировано
Jost J. Bosonic Strings: A Mathematical Treatment
American Mathematical Society and International Press, 2001. - 95 Pages. ISBN: 0821826441
Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuüller and moduli spaces of Riemann surfaces and the corresponding function spaces, i.e., Hilbert spaces of Sobolev type and diffeomorphism groups. Other useful tools are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants. Also discussed are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces. Some new physical concepts, such as D-branes, are also discussed.
Point particles
Point particles and path integrals
Faddeev-Popov gauge fixing and BRST symmetry
BRST quantization of the point particle
The Bosonic string
The classical action for strings
Sobolev spaces
Boundary regularity
Spaces of mappings and metrics
The global structure of the spaces of matrics, complex structures, and diffeomorphisms on a surface
Infinitesimal decompositions of metrics
Complex analytic aspects
Teichmuller and moduli spaces of Riemann surfaces
Determinants
The partition function for the Bosonic string
Some physical aspects
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация