John Wiley & Sons, Inc., 2017. — xx+680 p. — (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs, and Tracts). — ISBN: 978-1118742129.
The first comprehensive survey of mathematics most fascinating number sequences Fibonacci and Lucas numbers have intrigued amateur and professional mathematicians for centuries. This volume represents the first attempt to compile a definitive history and authoritative analysis of these famous integer sequences, complete with a wealth of exciting applications, enlightening examples, and fun exercises that offer numerous opportunities for exploration and experimentation. The author has assembled a myriad of fascinating properties of both Fibonacci and Lucas numbers - as developed by a wide range of sources - and catalogued their applications in a multitude of widely varied disciplines such as art, stock market investing, engineering, and neurophysiology. Most of the engaging and delightful material here is easily accessible to college and even high school students, though advanced material is included to challenge more sophisticated Fibonacci enthusiasts. A historical survey of the development of Fibonacci and Lucas numbers, biographical sketches of intriguing personalities involved in developing the subject, and illustrative examples round out this thorough and amusing survey. Most chapters conclude with numeric and theoretical exercises that do not rely on long and tedious proofs of theorems.
Fibonacci and Lucas Numbers with Applications, Volume I, Second Edition provides a user-friendly and historical approach to the many fascinating properties of Fibonacci and Lucas numbers, which have intrigued amateurs and professionals for centuries. Offering an in-depth study of the topic, this book includes exciting applications that provide many opportunities to explore and experiment.
In addition, the book includes a historical survey of the development of Fibonacci and Lucas numbers, with biographical sketches of important figures in the field. Each chapter features a wealth of examples, as well as numeric and theoretical exercises that avoid using extensive and time-consuming proofs of theorems. The Second Edition offers new opportunities to illustrate and expand on various problem-solving skills and techniques. In addition, the book features:
• A clear, comprehensive introduction to one of the most fascinating topics in mathematics, including links to graph theory, matrices, geometry, the stock market, and the Golden Ratio
• Abundant examples, exercises, and properties throughout, with a wide range of difficulty and sophistication
• Numeric puzzles based on Fibonacci numbers, as well as popular geometric paradoxes, and a glossary of symbols and fundamental properties from the theory of numbers
• A wide range of applications in many disciplines, including architecture, biology, chemistry, electrical engineering, physics, physiology, and neurophysiology
The Second Edition is appropriate for upper-undergraduate and graduate-level courses on the history of mathematics, combinatorics, and number theory. The book is also a valuable resource for undergraduate research courses, independent study projects, and senior/graduate theses, as well as a useful resource for computer scientists, physicists, biologists, and electrical engineers.
(перевод)Первый всесторонний обзор математики наиболее увлекательные числовые последовательности чисел Фибоначчи и Люка заинтриговали любителей и профессиональных математиков на протяжении веков. Этот том представляет собой первую попытку составить окончательную историю и авторитетный анализ этих известных целочисленных последовательностей, в комплекте с множеством захватывающих приложений, поучительных примеров и забавных упражнений, которые предлагают многочисленные возможности для исследования и экспериментов. Автор собрал множество увлекательных свойств чисел Фибоначчи и Люка, разработанных широким кругом источников, и каталогизировал их применение во множестве самых разнообразных дисциплин, таких как искусство, инвестирование на фондовом рынке, инженерия и нейрофизиология. Большой часть из включая и восхитительного материала здесь легко доступна к коллежу и даже старшеклассникам, хотя предварительный материал включен для того чтобы бросить вызов более изощренные энтузиасты Фибоначчи. Исторический обзор развития чисел Фибоначчи и Люка, биографические очерки интригующих личностей, участвующих в разработке предмета, и иллюстративные примеры завершают этот тщательный и забавный обзор. Большинство глав завершаются числовыми и теоретическими упражнениями, которые не опираются на длинные и утомительные доказательства теорем.
Второе издание книги обеспечивает удобный и исторический подход ко многим увлекательным свойствам чисел Фибоначчи и Люка, которые заинтриговали любителей и профессионалов на протяжении веков. Предлагая углубленное изучение этой темы, эта книга включает в себя захватывающие приложения, которые предоставляют множество возможностей для изучения и экспериментов.
Кроме того, книга включает в себя исторический обзор развития чисел Фибоначчи и Люка, с биографическими набросками важных фигур в этой области. Каждая глава содержит множество примеров, а также числовые и теоретические упражнения, которые позволяют избежать использования обширных и трудоемких доказательств теорем. Второе издание предлагает новые возможности для иллюстрации и расширения различных навыков и методов решения проблем. Кроме того, в книге представлены:
• Четкое, всестороннее введение в одну из самых увлекательных тем в математике, включая ссылки на теорию графов, матрицы, геометрию, фондовый рынок и золотое сечение
• Обильные примеры, упражнения и свойства во всем, с широким спектром сложности и сложности
• Числовые головоломки, основанные на числах Фибоначчи, а также популярные геометрические парадоксы и глоссарий символов и фундаментальных свойств из теории чисел
• Широкий спектр применения во многих дисциплинах, включая архитектуру, биологию, химию, электротехнику, физику, физиологию и нейрофизиологию
Второе издание подходит для курсов верхнего уровня бакалавриата и магистратуры по истории математики, комбинаторике и теории чисел. Книга также является ценным ресурсом для бакалавриата научно-исследовательских курсов, независимых учебных проектов и аспирантских диссертаций, а также полезным ресурсом для компьютерных ученых, физиков, биологов и инженеров-электриков.
List of Symbols
Leonardo FibonacciFibonacci NumbersFibonacci’s Rabbits
Fibonacci Numbers
Fibonacci and Lucas Curiosities
Fibonacci Numbers in NatureFibonacci, Flowers, and Trees
Fibonacci and Male Bees
Fibonacci, Lucas, and Subsets
Fibonacci and Sewage Treatment
Fibonacci and Atoms
Fibonacci and Reflections
Paraffins and Cycloparaffins
Fibonacci and Music
Fibonacci and Poetry
Fibonacci and Neurophysiology
Electrical Networks
Additional Fibonacci and Lucas OccurrencesFibonacci Occurrences
Fibonacci and Compositions
Fibonacci and Permutations
Fibonacci and Generating Sets
Fibonacci and Graph Theory
Fibonacci Walks
Fibonacci Trees
Partitions
Fibonacci and the Stock Market
Fibonacci and Lucas IdentitiesSpanning Tree of a Connected Graph
Binet’s Formulas
Cyclic Permutations and Lucas Numbers
Compositions Revisited
Number of Digits in
Fn and
Ln 101
Theorem 5.8 Revisited
Catalan’s Identity
Additional Fibonacci and Lucas Identities
Fermat and Fibonacci
Fibonacci and
πGeometric Illustrations and ParadoxesGeometric Illustrations
Candido’s Identity
Fibonacci Tessellations
Lucas Tessellations
Geometric Paradoxes
Cassini-Based Paradoxes
Additional Paradoxes
Gibonacci NumbersGibonacci Numbers
Germain’s Identity
Additional Fibonacci and Lucas FormulasNew Explicit Formulas
Additional Formulas
The Euclidean Algorithm
The Euclidean Algorithm
Formula (5.5) Revisited
Lamé’s Theorem
Divisibility PropertiesFibonacci Divisibility
Lucas Divisibility
Fibonacci and Lucas Ratios
An Altered Fibonacci Sequence
Pascal’s TriangleBinomial Coefficients
Pascal’s Triangle
Fibonacci Numbers and Pascal’s Triangle
Another Explicit Formula for
LnCatalan’s Formula
Additional Identities
Fibonacci Paths of a Rook on a Chessboard
Pascal-like TrianglesSums of Like-Powers
An Alternate Formula for
LnDifferences of Like-Powers
Catalan’s Formula Revisited
A Lucas Triangle
Powers of Lucas Numbers
Variants of Pascal’s Triangle
Recurrences and Generating FunctionsLHRWCCs
Generating Functions
A Generating Function for
F3nA Generating Function for
F3nSummation Formula (5.1) Revisited
A List of Generating Functions
Compositions Revisited
Exponential Generating Functions
Hybrid Identities
Identities Using the Differential Operator
Combinatorial Models IA Fibonacci Tiling Model
A Circular Tiling Model
Path Graphs Revisited
Cycle Graphs Revisited
Tadpole Graphs
Hosoya’s Triangle
Recursive Definition
A Magic Rhombus
The Golden RatioRatios of Consecutive Fibonacci Numbers
The Golden Ratio
Golden Ratio as Nested Radicals
Newton’s Approximation Method
The Ubiquitous Golden Ratio
Human Body and the Golden Ratio
Violin and the Golden Ratio
Ancient Floor Mosaics and the Golden Ratio
Golden Ratio in an Electrical Network
Golden Ratio in Electrostatics
Golden Ratio by Origami
Differential Equations
Golden Ratio in Algebra
Golden Ratio in Geometry
Golden Triangles and RectanglesGolden Triangle
Golden Rectangles
The Parthenon
Human Body and the Golden Rectangle
Golden Rectangle and the Clock
Straightedge and Compass Construction
Reciprocal of a Rectangle
Logarithmic Spiral
Golden Rectangle Revisited
Supergolden Rectangle
FigeometryThe Golden Ratio and Plane Geometry
The Cross of Lorraine
Fibonacci Meets Apollonius
A Fibonacci Spiral
Regular Pentagons
Trigonometric Formulas for
Fn[/i]
Regular Decagon
Fifth Roots of Unity
A Pentagonal Arch
Regular Icosahedron and Dodecahedron
Golden Ellipse
Golden HyperbolaContinued Fractions
Finite Continued Fractions
Convergents of a Continued Fraction
Infinite Continued Fractions
A Nonlinear Diophantine EquationFibonacci Matrices
The [i]Q-Matrix
Eigenvalues of
QnFibonacci and Lucas Vectors
An Intriguing Fibonacci Matrix
An Infinite-Dimensional Lucas Matrix
An Infinite-Dimensional Gibonacci Matrix
The Lambda Function
Graph-theoretic Models IA Graph-theoretic Model for Fibonacci Numbers
Byproducts of the Combinatorial Models
Summation Formulas
Fibonacci DeterminantsAn Application to Graph Theory
The Singularity of Fibonacci Matrices
Fibonacci and Analytic Geometry
Fibonacci and Lucas Congruences
Fibonacci Numbers Ending in Zero
Lucas Numbers Ending in Zero
Additional Congruences
Lucas Squares
Fibonacci Squares
A Generalized Fibonacci Congruence
Fibonacci and Lucas Periodicities
Lucas Squares Revisited
Periodicities Modulo 10
nFibonacci and Lucas SeriesA Fibonacci Series
A Lucas Series
Fibonacci and Lucas Series Revisited
A Fibonacci Power Series
Gibonacci Series
Additional Fibonacci Series
Weighted Fibonacci and Lucas SumsWeighted Sums
Gauthier’s Differential Method
Fibonometry IGolden Ratio and Inverse Trigonometric Functions
Golden Triangle Revisited
Golden Weaves
Additional Fibonometric Bridges
Fibonacci and Lucas Factorizations
Completeness TheoremsCompleteness Theorem
Egyptian Algorithm for Multiplication
The Knapsack ProblemThe Knapsack Problem
Fibonacci and Lucas SubscriptsFibonacci and Lucas Subscripts
Gibonacci Subscripts
A Recursive Definition of
YnFibonacci and the Complex PlaneGaussian Numbers
Gaussian Fibonacci and Lucas Numbers
Analytic Extensions
AppendixFundamentals
The First 100 Fibonacci and Lucas Numbers
The First 100 Fibonacci Numbers and Their Prime Factorizations
The First 100 Lucas Numbers and Their Prime Factorizations
AbbreviationsSolutions to Odd-Numbered Exercises
Index