CRC Press, 2019. — 358 p. — (Mathematics and Physics for Science and Technology). — ISBN: 0367137232.
Singular Differential Equations and Special Functions is
the fifth book within
Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of
one chapter (chapter 9 of the set). The chapter starts with
general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as
existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations
with variable coefficients, that can be
analytic functions or have
regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to
generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions.
Includes existence, unicity, robustness, uniformity, and other theorems for
non-linear differential equations.
Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as
Liapunov functions.
Includes linear differential equations
with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance.
Details theory of the
generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions.Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and
solutions via power series, parametric integral transforms, and continued fractions.True PDF