Зарегистрироваться
Восстановить пароль
FAQ по входу

Cassels J.V.S. An Introduction to the Geometry of Numbers

  • Файл формата pdf
  • размером 14,49 МБ
  • Добавлен пользователем
  • Описание отредактировано
Cassels J.V.S. An Introduction to the Geometry of Numbers
New York: Springer, 1996. — 357 p.
Notation
Prologue
Lattices
Bases and sublattices
Lattices under linear transformation
Forms and lattices
The polar lattice
Reduction
The basic process
Definite quadratic forms
Indefinite quadratic forms
Binary cubic forms
Other forms
Theorems of BLICHFELDT and MINKOWSKI
BLICHFELDT'S and MINKOWSKI's theorems
Generalisations to non-negative functions
Characterisation of lattices
Lattice constants
A method of MORDELL
Representation of integers by quadratic forms
Distance-Functions
General distance-functions
Convex sets
Distance-functions and lattices
MAHLER'S compactness theorem
Linear transformations
Convergence of lattices
Compactness for lattices
Critical lattices
Bounded star-bodies
Reducibility
Convex bodies
Spheres
Applications to diophantine approximation
The theorem of MINKOWSKI-HLAWKA
Sublattices of prime index
The Minkowski-Hlawka Theorem
SCHMIDT's theorems
A conjecture of Rogers
Unbounded star-bodies
The quotient space
General properties
The sum theorem
Successive minima
Spheres
General distance-functions
Convex sets
Polar convex bodies
Packings
ets with V(S) = 2^n ⊿(S)
VORONOï's results
Preparatory lemmas
FEJES TÓTH's theorem
Cylinders
Packing of spheres
The product of n linear forms
Automorphs
Special forms
A method of Mordell
Existence of automorphs
Isolation theorems
Applications of isolation
An infinity of solutions
Local methods
Inhomogeneous problems
Convex sets
Transference theorems for convex sets
Product of n linear forms
Appendix
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация