Зарегистрироваться
Восстановить пароль
FAQ по входу

Browning T. Cubic Forms and the Circle Method

  • Файл формата pdf
  • размером 2,03 МБ
  • Добавлен пользователем
  • Описание отредактировано
Browning T. Cubic Forms and the Circle Method
Birkhäuser, 2021. — xiv, 166 p. — (Progress in Mathematics 343). — ISBN 978-3-030-86871-0.
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Cubic Forms Over Local Fields
Waring’s Problem for Cubes
Cubic Forms viaWeyl Differencing
Norm Forms Over Number Fields
Diagonal Cubic Forms Over Function Fields
Lines on Cubic Hypersurfaces
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация