Зарегистрироваться
Восстановить пароль
FAQ по входу

Sánchez J.F., López-Salazar Codes J.L.-S., Sepúlveda J.B., Trutschnig W. Generalized Notions of Continued Fractions: Ergodicity and Number Theoretic Applications

  • Файл формата pdf
  • размером 20,42 МБ
  • Добавлен пользователем
  • Описание отредактировано
Sánchez J.F., López-Salazar Codes J.L.-S., Sepúlveda J.B., Trutschnig W. Generalized Notions of Continued Fractions: Ergodicity and Number Theoretic Applications
Boca Raton: CRC Press/Chapman & Hall, 2023. — 154 p.
Ancient times witnessed the origins of the theory of continued fractions. Throughout time, mathematical geniuses such as Euclid, Aryabhata, Fibonacci, Bombelli, Wallis, Huygens, or Euler have made significant contributions to the development of this famous theory, and it continues to evolve today, especially as a means of linking different areas of mathematics.
This book, whose primary audience is graduate students and senior researchers, is motivated by the fascinating interrelations between ergodic theory and number theory (as established since the 1950s). It examines several generalizations and extensions of classical continued fractions, including generalized Lehner, simple, and Hirzebruch-Jung continued fractions. After deriving invariant ergodic measures for each of the underlying transformations on [0,1] it is shown that any of the famous formulas, going back to Khintchine and Levy, carry over to more general settings. Complementing these results, the entropy of the transformations is calculated and the natural extensions of the dynamical systems to [0,1]2 are analyzed.
Features
Suitable for graduate students and senior researchersWritten by international senior experts in number theoryContains the basic background, including some elementary results, that the reader may need to know before hand, making it a self-contained volume
Preface
Authors
Generalized Lehner continued fractions
a-modified Farey series
Ergodic aspects of the generalized Lehner continued fractions
The a-simple continued fraction
The generalized Khintchine constant
The entropy of the system ([0, 1], B, μa, Ta)
The natural extension of ([0, 1], B, μa, Ta)
The dynamical system ([0, 1], B, νa, Qa)
Generalized Hirzebruch-Jung continued fractions
The entropy of ([0, 1], B, ϑa, Ha)
The natural extension of ([0, 1], B, ϑa, Ha)
A new generalization of the Farey series
Bibliography
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация