Зарегистрироваться
Восстановить пароль
FAQ по входу

Bolker E.D. Elementary Number Theory: An Algebraic Approach

  • Файл формата djvu
  • размером 1,53 МБ
  • Добавлен пользователем
  • Описание отредактировано
Bolker E.D. Elementary Number Theory: An Algebraic Approach
New York: W.A. Benjamin, Inc., 1970. — xii, 180 p. — ISBN 0-8053-1018-5.
This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and the Fermat conjecture for exponents three and four. The text contains abundant numerical examples and a particularly helpful collection of exercises, many of which are small research problems requiring substantial study or outside reading. Some problems call for new proofs for theorems already covered or for inductive explorations and proofs of theorems found in later chapters.
Preface
Linear Diophantine Equations
Sums of Squares
Divisibility and Unique Factorization
The Diophantine Equation ax + b = c
The Diophantine Equation a₁x₁ + · · · + aₙxₙ = c
The Infinitude of the Primes
Problems
Congruence
Arithmetic in ℤₙ: Solving Congruences
The Chinese Remainder Theorem
The Euler φ-Function
More about φ(n)
Problems
Polynomials
The Algebra of Polynomials
Wilson's Theorem
The Diophantine Equation x² + y² = p
Problems
The Group of Units of ℤₙ
Decimal Expansions
Cyclic Groups
The Group Φ(p)
The Group Φ(2ᵅ)
The Group Φ(pᵅ)
The Group Φ(n)
Problems
Quadratic Reciprocity
Residues
The Lemma of Gauss
The Quadratic Reciprocity Law
The Diophantine Equation x² ̶ my² = ±p
Problems
Quadratic Number Fields
The Field ℚ(√m)
Algebraic Integers
Norms and Units
Units in Real Fields: Pell's Equation
Primes
Euclidean Number Fields
Consequences of Unique Factorization
The Diophantine Equation x² + 2y² = n
The Sum of Two Squares
A( ̶ 3) and Related Diophantine Equations
The Diophantine Equation x² ̶ 2y² = n
Quadratic Forms and Quadratic Number Fields
Sums of Four Squares
Problems
The Fermat Conjecture
Pythagorean Triples
x⁴ + y⁴ = z⁴; the Method of Descent
The Diophantine Equation x³ + y³ = z³
Cyclotomic Fields
Problems
Appendicies
Unique Factorization
Primitive Roots
Indices for Φ(315)
Fundamental Units in Real Quadratic Number Fields
Chronological Table
Bibliography
List of Symbols
Index
Файл: отскан. стр. (b/w 600 dpi) + OCR + закладки
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация