Зарегистрироваться
Восстановить пароль
FAQ по входу

Lipkowitz Kenny B., Larter R., Gundari Thomas R. (ed.). Reviews in Computational Chemistry. Volume 19

  • Файл формата pdf
  • размером 3,03 МБ
  • Добавлен пользователем
  • Описание отредактировано
Lipkowitz Kenny B., Larter R., Gundari Thomas R. (ed.). Reviews in Computational Chemistry. Volume 19
John Wiley & Sons, Inc., 2003. – 393 p.
This volume of Reviews in Computational Chemistry includes an appendix with a lengthy compilation of books on the various topics in computational chemistry: techniques and strategies for monte carlo thermodynamic calculations, with applications to nanoclusters, computing hydrophobicity, born–oppenheimer direct dynamics classical trajectory simulations and the poisson–boltzmann equation.
Computational Techniques and Strategies for Monte Carlo Thermodynamic Calculations, with Applications to Nanoclusters
Robert Q. Topper, David L. Freeman, Denise Bergin, and Keirnan R. LaMarche
Metropolis Monte Carlo
Random-Number Generation: A Few Notes
The Generalized Metropolis Monte Carlo Algorithm
Metropolis Monte Carlo: The ‘‘Classic’’ Algorithm
The Barker–Watts Algorithm for Molecular Rotations
Equilibration: Why Wait?
Error Estimation
Quasi-ergodicity: An Insidious Problem
Overcoming Quasi-ergodicity
Mag-Walking
Subspace Sampling
Jump-Between-Wells Method
Atom-Exchange Method
Histogram Methods
Umbrella Sampling
J-Walking, Parallel Tempering, and Related Methods
J-Walking
Parallel Tempering
Jumping to Tsallis Distributions
Applications to Microcanonical Simulations
Multicanonical Ensemble/Entropy Sampling
Conclusions
Computing Hydrophobicity
David E. Smith and Anthony D.J. Haymet
Simulation Methods
Statistical Mechanics and Thermodynamics
Particle Insertion Methods
Perturbation Methods
Thermodynamic Integration
Free Energy and Structure
Entropy and Energy
Heat Capacity
Hydrophobic Hydration
Structure
Hydration Free Energy
Hydration Entropy and Energy
Hydration Heat Capacity
Water Mimics
Hydrophobic Interactions
Free Energy of Association
Entropy and Energy of Association
Heat Capacity of Association
Pressure Dependence of Hydrophobic Interactions
Outlook
Born–Oppenheimer Direct Dynamics Classical Trajectory Simulations
Lipeng Sun and William L. Hase
Classical Trajectory Simulations
Traditional Approach: Analytic Potential Energy Surfaces
Direct Dynamics Simulations
Born–Oppenheimer Direct Dynamics
Semiempirical Electronic Structure Theory
Ab Initio Electronic Structure Theory
QM+MM and QM/MM Methods
Integrating the Classical Equations of Motion
Cartesian Coordinates
Instantaneous Normal-Mode Coordinates
Trajectory Initial Conditions
Unimolecular Reactions
Bimolecular Reactions
Exciting the Transition State
Gas–Surface Collisions
Importance of Quantum Effects
Bimolecular Reactions 1
Intramolecular Dynamics and Unimolecular Reactions
Applications of Born–Oppenheimer Direct Dynamics
Cyclopropane Stereomutation
Cl + CH3Cl Central-Barrier Dynamics
OH + CH3F Exit-Channel Dynamics
Protonated Glycine Surface-Induced Dissociation
Concluding Remarks
The Poisson–Boltzmann Equation
Gene Lamm
State of the Field
Overview of the Chapter
A Brief History
The Poisson–Boltzmann Equation
Analytical Solutions to the Poisson–Boltzmann Equation
Planar Geometry: The Membrane Model
Curved Surfaces: Cylinders and Spheres
Cylindrical Geometry: The Polymer Model
Spherical Geometry: The Micelle Model
Mixed-Geometry Studies
Numerical Solutions to the Poisson-Boltzmann Equation
One-Dimensional Geometries
Finite-Difference/Finite-Element Algorithms
Alternative General-Purpose Methods
Large-Scale Applications
Beyond the Poisson–Boltzmann Equation
Assumptions of the Poisson–Boltzmann Equation
Common Approximations to the Poisson–Boltzmann Equation
Alternatives to the Poisson–Boltzmann Equation
Concluding Remarks
Author Index
Subject Index
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация