Волгу, г. Волгоград, 2012 г., 45 стр.
Цель
Получить навыки создания программных приложений для моделирования нестационарных многомерных процессов на основе пространственно временной модели "Хищник-Жертва"
Основные задачи:
1) Сделать обзор современных подходов к построению метематических моделей.
2) Описать модели динамических систем, хищник-жертва в локальном...
Томский государственный университет систем управления и радиоэлектроники Кафедра автоматизированных систем управления Вычислительная математика Лабораторные работы по дисциплине «Вычислительная математика» для студентов очной формы обучения специальности «Программное обеспечение вычислительной техники и автоматизированных систем» Лабораторная работа №1 «Решение уравнений с...
Алматинский ВУЗ индустрии, экономики и кибернетики.
Факультет информатики.
Кафедра технической кибернетики.
Информатика, ВТ, телекоммуникации.
Гринев М.В. Алматы 1998 г.
Введение. Теоретический материал. Интерполяционный многочлен Лагранжа. Конечные и разделенные разности. Интерполяционный многочлен Ньютона. Методические рекомендации. Методика изучения курса «Численные методы». Организация самостоятельной работы студентов. Психолого-педагогические аспекты самостоятельной деятельности студентов. Методические рекомендации по использованию...
Собрание веб-архивов хорошего качества, содержащих в себе конкретные примеры решения различных задач с помощью численных методов в среде одного из наиболее распространенных математических пакетов Mathcad. Данное собрание на основе кратко и четко изложенного материала поможет разобраться в практической стороне рассмотренных численных методов, их применении и решении подобных...
УГАТУ, ФИРТ, ПО 2й курс, 2010г преподаватель: Гадилова Фируза Гарифьяновна Программа выполнена на Microsoft Visual C++ 2008 LU-разложение — представление матрицы A в виде LU, где L — нижняя треугольная матрица, а U — верхняя треугольная матрица. LU-разложение еще называют LU-факторизацией. LU-разложение используется для решения систем линейных уравнений и для обращения матриц.
Лабораторная работа - Метод наименьших квадратов. УГАТУ, ФИРТ 2й курс, 2010г. преподаватель: Гадилова Фируза Гарифьяновна. Программа выполнена на Microsoft Visual C++ 2008.
Решение обычного дифференциального уравнения первого порядка методом Эйлера. Имеется возможность ввода начального значения x и шага h. Производится построение графика приближенного решения функции.
Применение разрывного метода Галеркина (RKDG) для уравнения переноса и уравнения мелкой воды . Все уравнения посчитаны с первым, вторым и третьим порядком сходимости по пространству и первым порядком по времени. В работе применялись потоки: Годунова (для переноса); Лакса-Фридрихса (для мелкой воды); В работе применялись лимитеры: Для первого порядка сходимости не применялись...
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Зейделя и просчитать решение системы данного варианта. Работа выполнена в MS Visual Studio 2008
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель и задача работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Гаусса с выбором главного элемента и просчитать решение системы данного варианта.
Работа выполнена в...
Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением. ( U(x, y, t) = sin(x) * sin(y) * sin(t) ) Исследовать зависимость погрешности от...
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
Используя явную и неявную конечно-разностные схемы, а также схему Кранка - Николсона, решить начально-краевую задачу для дифференциального уравнения параболического типа. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком, двухточечная...
Программа строит графики функций одной переменной любой сложности. Может использоваться для вычисления трассировочных точек при построении графиков от руки. Поддерживает различные математические функции: cos, sin, tg, lg, exp и прочие в любой комбинации и вложенности. Поможет в нахождении интегралов. Результат работы можно сохранить в графические файлы различных форматов: .BMP,...
Простой, но мощный калькулятор арифметических выражений, поддерживающий 20 арифметических и логических операций и более 40 функций. Имеется встроенный модуль пересчета единиц измерения. Запоминает до 500 последних введенных выражений и результатов. Основные характеристики программы: обработка комплексных чисел, обыкновенных дробей и операции со строками, датой и временем;...
Программа-конвертор физических величин с интересным графическим интерфейсом. Наверняка ученикам частенько приходится переводить сантиметры в километры, а квадратные метры в акры. Теперь можно перепоручить эти скучные действия Lidnic 11.02. Программа может округлять переводимые величины с разной степенью точности. Для быстрого доступа ярлык программки можно поместить в трэй.
Программа, позволяющая работать с комплексной, матричной и булевской арифметиками; содержит более 300 встроенных функций, включая статистические, финансовые и специальные; осуществляет интегрирование, дифференцирование, поиск корней и экстремумов. Умеет строить двухмерные и трехмерные графики. Содержит встроенную библиотеку физических констант и единиц измерения.
Прикладная программа, позволяющая находить решения алгебраических уравнений с комплексными коэффициентами и комплексными корнями. Основные возможности: степень уравнения практически не ограничена; начальное приближение для начала расчета не требуется; находятся все корни уравнения, включая кратные; коэффициенты и корни уравнения могут быть комплексными; все корни уравнения...
Есть отчёт с постановкой задачи, описанием методов к численному решению, осуществлён численный просчёт "на ручках", выложен текст программы на C# (метод Эйлера, Рунге-Кутта 4-ого порядка, Эйлера-Коши), и много разных вариаций исходников, так что писать не надо, пользуйтесь!
Решение СЛАУ методами Гаусса, Зейделя, простой итерацией, ортогонализацией. Исходники и exe на C++ ( Visual Studio 2008 ). ООП подход. Для систем размерности N на N+1, точность задается.
ПРИГЛАШАЕМ ВАС ЗАОЧНО ПРИНЯТЬ УЧАСТИЕ В IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ "НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011", КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДАРАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский. ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте. СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки ПОДСЕКЦИИ: уточняйте на нашем сайте СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно. РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя. КОНТАКТЫ:Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3 Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
Предлагаю выделить в разделе "Вычислительная математика" подраздел "Метод конечных элементов и его применение".Это направление сейчас очень сильно развивается. Думаю с его наполнением проблем не будет.Перенос файлов в этот раздел можно сделать по названию файлов.
Да, смогу, так как имею определенный опыт по использованию метода конечных элементов.Если Вас устроит, вышлю файл со списком ссылок и помещу его в раздел "Вычислительная математика".
Комментарии
IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ
ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ
"НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011",
КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДАРАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский.
ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте.
СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки
ПОДСЕКЦИИ: уточняйте на нашем сайте
СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно.
РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя.
КОНТАКТЫ:Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua
On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3
Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
...2. Вычислительные методы линейной алгебры
...