Cambridge University Press, 2005. — 433 p. — ISBN: 978-0-521-85287-6. Code files only! Numerical Methods in Engineering with Python is a text for engineering students and a reference for practicing engineers, especially those who wish to explore the power and efficiency of Python. Introduction to Python. Systems of Linear Algebraic Equations. Interpolation and Curve Fitting....
Taylor & Francis Group, 2008. — 528 p. ( The file contains only CDROM Disk data from the book ). This book comes packaged with a CD-ROM that contains: FORTRAN and executable computer codes that operate under Microsoft Windows Vista operating system and the OS X operating system for Apple computers. Windows Vista and MAC compatible movies and PowerPoint presentations for each...
Учебное пособие для вузов. — М.: Гостехиздат, 1949. — 465 с. Предлагаемое издание книги "Приближенные вычисления" имеет своей целью научить производить численные расчеты с соблюдением максимальной экономии времени и средств без ущерба для разумной точности этих расчетов.
Сумской Государственный Университет, II курс, 19 страниц, Программная реализация на Паскале. История рождения метода Монте-Карло. Использование метода Монте-Карло в численном интегрировании. Применение метода Монте-Карло для вычисления кратных интегралов (на примере двукратных интегралов).
Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением. ( U(x, y, t) = sin(x) * sin(y) * sin(t) ) Исследовать зависимость погрешности от...
Методические указания к лабораторным работам. — Донецк: ДонНТУ, 2009. — 38 с.
Приведені три лабораторні роботи, виконання яких дозволяє студентам засвоїти чисельні методи розв'язання нелінійних рівнянь, систем лінійних алгебраїчних рівнянь, а також інтерполяцію за допомогою ступеневого багаточлена.
В программе реализовано построение глобальной, локальной линейной и квадратической интерполяции от одной из 25 функций, заданных программно. Реализован расчет погрешности для каждого вида интерполяции.
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
Ознакомление с методами численного интегрирования функций. Метод правых, левых, и симметричных прямоугольников. Метод трапеций. Метод паробол. Ознакомление с понятием порядка точности численного метода, а также со способами контроля численных результатов.
Ознакомление с методами поиска экстремума нелинейной выпуклой функции нескольких переменных и решение таких задач с помощью ЭВМ. Метод градиентного спуска.
Прога+отчет.
В отчете:
1. Метод Леверрье для нахождения коэффициентов характеристического полинома.
2. Использование коэффициентов характеристического полинома матрицы для ее обращения.
3. Математические выкладки.
4. Результат выполнения программы.
5. Листинг программы.
Казанский государственный университет имени А. Н. Туполева.
Кафедра прикладной математики и...
РГАТА. ВС. 2 курс. Программы реализованы на языке программирования Delphi с проверкой в Mathcad. Вложеный файл содержит: исходники, задачи на Mathcad, пояснительную записку Лабораторная работа № 1. Интерполяция по Лагранжу Лабораторная работа № 2. Метод разделённых разностей Лабораторная работа № 3. Интегрирование по методу Симпсона Лабораторная работа № 4. Метод наименьших...
Печатный вариант контрольной работы (формулировка задач, внешний вид форм, программные коды) + программки для решения задач в VB 6.0 (нелинейные и линейные уравнения, интерполирование, задача Коши, определенный интеграл, аппроксимация)
Введение. Теоретический материал. Интерполяционный многочлен Лагранжа. Конечные и разделенные разности. Интерполяционный многочлен Ньютона. Методические рекомендации. Методика изучения курса «Численные методы». Организация самостоятельной работы студентов. Психолого-педагогические аспекты самостоятельной деятельности студентов. Методические рекомендации по использованию...
ТулГУ, факультет кибернетики.
Решение нелинейного уравнения следующими методами:
метод половинного деления (дихотомии).
метод простой итерации.
метод Ньютона (касательных).
метод секущих (хорд).
метод парабол.
Файл содержит отчет и исходник программы (Делфи).
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
Используя явную и неявную конечно-разностные схемы, а также схему Кранка - Николсона, решить начально-краевую задачу для дифференциального уравнения параболического типа. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком, двухточечная...
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
Применение разрывного метода Галеркина (RKDG) для уравнения переноса и уравнения мелкой воды , расчет слабой сходимости для уравнения мелкой воды. Все уравнения посчитаны с первым, вторым и третьим порядком сходимости по пространству и первым порядком по времени. В работе применялись потоки: Годунова (для переноса); Лакса-Фридрихса (для мелкой воды); В работе применялись...
Применение разрывного метода Галеркина (RKDG) для уравнения переноса и уравнения мелкой воды . Все уравнения посчитаны с первым, вторым и третьим порядком сходимости по пространству и первым порядком по времени. В работе применялись потоки: Годунова (для переноса); Лакса-Фридрихса (для мелкой воды); В работе применялись лимитеры: Для первого порядка сходимости не применялись...
ТулГУ, факультет кибернетики.
Решение системы линейных уравнений по формулам Крамера.
Решение системы линейных уравнений методом Гаусса.
Решение системы линейных уравнений методом прогонки для систем с трехдиагональной матрицей.
Файл содержит отчет и исходники программ (Делфи).
Программа(Delphi) предусматривает: решение ДУ методом Эйлера и Рунге-Кутта с заданным шагом или половинным шагом; решение системы ДУ методом Эйлера и Рунге-Кутта с заданным шагом или половинным шагом; построение графиков найденных функций. Файл содержит: проект (.dpr); отчет (.docx); методические указания(.doc);
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель и задача работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Гаусса с выбором главного элемента и просчитать решение системы данного варианта.
Работа выполнена в...
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Зейделя и просчитать решение системы данного варианта. Работа выполнена в MS Visual Studio 2008
Программа (консольная) решения СЛАУ методом релаксации. Архив содержит описание метода, отчёт с блок-схемой и результатами, текст программы, исходники. Программа написана на языке C. Функция решения работает с матрицами любой размерности.
Программа (консольная) решения СЛАУ методом Халецкого на языке C. Архив содержит текст программы, описание метода, отчёт, исходники. Программа работает с матрицами любой размерности.
ТулГУ, факультет кибернетики.
Файл содержит отчет и исходник программы (Делфи).
Дифференцировнаие: Рассчитать значение производной первого и второго порядка функци, заданной таблично.
Интегрирование: Рассчитать определенный интеграл по квадратурным формулам.
левых прямоугольников.
правых прямоугольников.
центральных прямоугольников.
трапеций.
Программа, написанная на Delphi, предусматривает: вычисление интегралов методом Монте-Карло с предварительным указанием числа испытаний; вычисление интеграла с помощью формулы Симпсона с указанной точностью. Архив содержит: программа(проект); отчет в DOCX; методические указания(.pdf); файл Mathcad(.xmcd) для подтверждения правильности работы программы
МАИ, экзамен, 2014.
Прямые методы.
Метод Гаусса.
Метод прогонки.
Метод простых итераций.
Метод Зейделя.
Метод вращений.
Методы численного интегрирования.
ПРИГЛАШАЕМ ВАС ЗАОЧНО ПРИНЯТЬ УЧАСТИЕ В IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ "НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011", КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДАРАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский. ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте. СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки ПОДСЕКЦИИ: уточняйте на нашем сайте СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно. РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя. КОНТАКТЫ:Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3 Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
Предлагаю выделить в разделе "Вычислительная математика" подраздел "Метод конечных элементов и его применение".Это направление сейчас очень сильно развивается. Думаю с его наполнением проблем не будет.Перенос файлов в этот раздел можно сделать по названию файлов.
Да, смогу, так как имею определенный опыт по использованию метода конечных элементов.Если Вас устроит, вышлю файл со списком ссылок и помещу его в раздел "Вычислительная математика".
Комментарии
IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ
ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ
"НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011",
КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДАРАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский.
ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте.
СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки
ПОДСЕКЦИИ: уточняйте на нашем сайте
СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно.
РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя.
КОНТАКТЫ:Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua
On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3
Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
...2. Вычислительные методы линейной алгебры
...