Philosophical Transactions. — 1698. — №240. — volume 20. — p. 190-193. De Moivre derived an equation which he was able to prove for all positive integers n .
Philosophical Transactions. — 1707. — №309. — volume 25. — p. 2368-2371. Sit u Numerus quicunque, y quantitas incognita, sive aequationis Radix quaesita, sitque a quantitas quxvis omnino cognita, five ut vocant Homogeneum Comparationis.
Philosophical Transactions. — 1722. — №374. — volume 32. — p. 228-230. Solutiones autem iste insertae fiierunt in Philoibphicis Transactionibus, Num. 309, pro mensibus Jan. Feb. Mart, ejusdem anni. Jam quibus perspectum erit quo artificio Formulae istae inventae fuerint, his procul dubio patebit aditus ad demonstrationem sequentis Theorematis.
London : J. Tonson & J. Watts, 1730. — 285 p. Accessere vari considerationes de methodis comparationum, combinationum & differentiarum, solutiones difficiliorum aliquot problematum ad sortem spectantium.
London : J. Tonson & J. Watts, 1730. — 277 p. Accessere vari considerationes de methodis comparationum, combinationum & differentiarum, solutiones difficiliorum aliquot problematum ad sortem spectantium.