Учебное пособие по дисциплине " Математика" для студентов, обучающихся по специальности Автомобиле- и тракторостроение. - М.: МГТУ МАМИ, 2010. - 294 с.
Пособие предназначено для изучения разделов математики, посвящëнных обыкновенным дифференциальным уравнениям и вариационному исчислению. Оно содержит теоретические сведения в объëме лекционного курса и подробно разобранные...
2011. Вместе 320 стр. Как решать дифференциальные уравнения; Методы решения дифференциальных уравнений; Уравнения с разделяющимися переменными; Однородное уравнение; Линейные уравнения первого порядка; Уравнения в полных дифференциалах. Интегрирующий множитель. и.т.д.
Задачи, приводящие к понятию дифференциального уравнения. Дифференциальные уравнения первого порядка: основные определения, задача Коши, общее и частное решения, общий и частный интеграл. ДУ первого порядка: понятие изоклины, особые точки ДУ. Геометрическая интерпретация общего решения ДУ. ДУ с разделяющимися переменными. Метод решения. Пример. Однородные и приводящиеся к...
В лекциях описаны основные понятия и теоремы относительно дифференциальных уравнений и рядов. Пособие предназначено для студентов вечернего факультета всех форм обучения. Может быть полезно и студентам других факультетов.
Самара: СамГАПС, 2006. – 75 с.
Лекции содержат материал, читаемый на специальностях с повышенной математической подготовкой. Каждый раздел снабжен иллюстративными примерами, который разобран максимально подробно.
Учебное пособие. — Нижний Новгород: Нижегородский государственный архитектурно-строительный университет (ННГАСУ), Институт экономики, управления и права, 2008. — 60 с. Основные понятия и определения. Дифференциальные уравнения I -го порядка. Дифференциальные уравнения II-го порядка, допускающие понижение порядка. Линейные дифференциальные уравнения II-го порядка. Контрольное...
Эти лекции читались автором на вечернем отделении МГТУ «МАМИ» на протяжении нескольких лет. Они включают всю программу для второго курса вечернего отделения по обыкновенным дифференциальным уравнениям. Курс лекций состоит из 8 лекций.
Навчальний посібник. — Одеса: Одеський національний університет імені І.І. Мечнікова (ОНУ), 2017. — 145 с. Конспект лекцій написано відповідно до програми курсу «Теорія стійкості руху», що читається магістрантам 5 курсу спеціальності «математика». Викладено основні методи дослідження стійкості, розглянуто низку прикладів. Для підготовки магістрів за спеціальностю «математика».
Навчальний посібник. — Одеса: Одеський національний університет імені І.І. Мечникова (ОНУ), 2017. — 397 с. Навчальний посібник написано відповідно до програми курсу «Диференціальні та інтегральні рівняння», що читається студентам 2 курсу спеціальностей «фізика», «прикладна фізика», «астрономія». Викладено основи теорії, представлено основні практичні методи інтегрування звичайних...
Одесса: ОНУ, 2015. — 149 с. Данное пособие состоит из 3-х глав и посвящено основам метода малого параметра А. Пуанкаре построения периодических решений квазилинейных дифференциальных уравнений второго порядка и систем дифференциальных уравнений -го порядка с постоянной матрицей коэффициентов линейной части. Рассмотрены нерезонансные и резонансные случаи. Изложение теоретического...
Toshkent: Toshkent to’qimachilik va yengil sanoat instituti, 2005. — 43 b. Ushbu ma’ruza matnida differensial tenglamalar haqida tushuncha, ularga olib kelinadigan ba’zi masalalar, birinchi va yuqori tartibli differensial tenglamalar va ularning yechilish usullari keltirilgan. 1-ma’ruza. Differensial tenglamalar haqida tushuncha 2-ma’ruza. O’zgaruvchilari ajraladigan...
Jizzax: Jizzax politеxnika instituti, 2006. — 19 b. ushbu uslubiy qo`llanma tеxnika yo`nalishi buyicha ta'lim olayotgan 2-kurs talabalari uchun oliy matеmatikaning «Diffеrеnsial tеnglamalar» qismi bo`yicha yozilgan bo`lib, talaba mustaqil ish darsi uchun mo`ljallangan. Mazkur qo'llanma O'zbekiston Respublikasi Vazirlar Mahkamasining 2001yil16 avgustdagi “Oliy ta'limning davlat...
Jizzax: Jizzax politеxnika instituti, 2006. — 16 b. Kirish. Mustaqil ishga berilgan misol va masalalarni yechish tartibi. Differentsial tenglamani berilgan boshlang`ich shartda xususiy yechimini toping va x=-3 bo`lganda uning qiymatini 0,01 aniqlikda hisoblang. Tartibini pasaytirish mumkin bo`lgan differentsial tenglamani umumiy yechimini toping. Differehtsial tenglamaning umumiy...
Комментарии